## 2010 AP<sup>®</sup> CHEMISTRY FREE-RESPONSE QUESTIONS

2. A student performs an experiment to determine the molar enthalpy of solution of urea, H<sub>2</sub>NCONH<sub>2</sub>. The student places 91.95 g of water at 25°C into a coffee-cup calorimeter and immerses a thermometer in the water. After 50 s, the student adds 5.13 g of solid urea, also at 25°C, to the water and measures the temperature of the solution as the urea dissolves. A plot of the temperature data is shown in the graph below.



- (a) Determine the change in temperature of the solution that results from the dissolution of the urea.
- (b) According to the data, is the dissolution of urea in water an endothermic process or an exothermic process? Justify your answer.
- (c) Assume that the specific heat capacity of the calorimeter is negligible and that the specific heat capacity of the solution of urea and water is  $4.2 \text{ J g}^{-1} \circ \text{C}^{-1}$  throughout the experiment.
  - (i) Calculate the heat of dissolution of the urea in joules.
  - (ii) Calculate the molar enthalpy of solution,  $\Delta H_{soln}^{\circ}$ , of urea in kJ mol<sup>-1</sup>.
- (d) Using the information in the table below, calculate the value of the molar entropy of solution,  $\Delta S_{soln}^{\circ}$ , of urea at 298 K. Include units with your answer.

|                                   | Accepted Value             |
|-----------------------------------|----------------------------|
| $\Delta H_{soln}^{\circ}$ of urea | 14.0 kJ mol <sup>-1</sup>  |
| $\Delta G_{soln}^{\circ}$ of urea | $-6.9 \text{ kJ mol}^{-1}$ |

- (e) The student repeats the experiment and this time obtains a result for  $\Delta H_{soln}^{\circ}$  of urea that is 11 percent below the accepted value. Calculate the value of  $\Delta H_{soln}^{\circ}$  that the student obtained in this second trial.
- (f) The student performs a third trial of the experiment but this time adds urea that has been taken directly from a refrigerator at 5°C. What effect, if any, would using the cold urea instead of urea at 25°C have on the experimentally obtained value of  $\Delta H_{soln}^{\circ}$ ? Justify your answer.